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Adaptive Control Strategies through Knowledge-Infused Deep Learning  
 

MSc project 

Develop a new strategy based on reinforcement learning (actor-critic framework) to control adaptive structures under 

general loading. Given the structural state under loading (state p), and a target state which could be defined by a target 

shape and limits on the internal forces (state a), the model is responsible to output appropriate actuator commands to 

control the structure from state p to a. Linear actuators are assumed to be fitted on some of the structural elements. The 

change of length (or stiffness) of the actuators modifies the structure geometry as well as the internal forces.  

During damage, one of more actuators might not work at full capacity and one or more structural elements might have 

collapsed. This scenario will be considered to train the control model to mitigate the effect of damage by redirecting the 

stress away from critically stressed elements. Deep Deterministic Policy Gradient will be adopted to learn simultaneously 

the “policy” function as well as the “value” function. To incorporate previous knowledge, the structure-control system 

might be represented through graph neural networks with an appropriate embedding and propagation operator in 

combination with reinforcement learning. 

Thesis supervision, writing, and examination will be carried out in English. 

 

 

Figure 1 Deformed and controlled states 

 

Supervision 

Co-directors: Gennaro Senatore (ILEK), Wolfgang Nowak (SimTech) 

Institute for Lightweight Structures and Conceptual Design (ILEK) – Stuttgart Centre for Simulation Science (SimTech) 

Contact: gennaro.senatore@ilek.uni-stuttgart.de, wolfgang.nowak@iws.uni-stuttgart.de  

 

 

Key requirements 

Bachelor’s degree in civil engineering, architecture and/or computer science. 

Knowledge of structural mechanics including dynamic analysis. 

Knowledge of (or strong interest to learn) machine learning. 

Knowledge of (or strong interest to learn) mathematical and structural optimization.  

Knowledge of (or strong interest to learn) MATLAB programming language. 

Advanced spoken and written English. 
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Background 

Adaptive structures can modify their shape and internal forces through sensing and actuation in order to counteract the 

effect of external loading (e.g., stress, deformation) [1], [2]. This way, significant material mass, embodied carbon and 

whole-life energy can be saved since the structure does not rely only on passive resistance to take the load but can alter 

its response to satisfy required limits in material strength and stiffness [3]. Most design and control methods have been 

developed for adaptive structures in the form of trusses and frames with linear actuators strategically placed on some of 

the structural elements[4]. The structural layout and actuator placement have been optimized simultaneously together 

with the derivation of control commands[5], [6]. Adaptive structures are typically designed with the objective to minimize 

material mass as well as whole-life energy encompassing the energy embodied in the material as well as an operational 

share for adaptation under loading during service[7]. The ability to control deflections within tight limits, is particularly 

beneficial for stiffness-governed configurations such as high-rise and slender buildings (height-to-depth ratio > 5:1) as 

well as long-span bridges [8]. Several methods for static and dynamic compensation have been successfully developed 

and tested [9]–[11]. However, little attention has been given to methods that enable “learning” from experience to 

improve the control model over time as well as to deal with geometric and material nonlinearity that might occur after 

damage.  

Recent studies have shown good potential in applying reinforcement learning (RL) combined with graph neural networks 

(GNNs) to various structural design and optimization tasks. Generally, the use of knowledge graphs (KG) has shown that 

it is possible to overcome interpretation problems typical of data-driven methods [12]. For example, neural networks 

(NNs) are excellent function approximators that can infer the underlying model from observations but are typically 

difficult to interpret and lack mechanisms for incorporating existing knowledge. Graphs can represent complex systems 

because they can encode information about the system entities and their inter-relationships. The use of graph neural 

networks (GNNs) [13] has shown great potential in diverse learning tasks that involve complex physics. For example in 

[14] the dynamic behavior of several physical systems was successfully learned by representing the state of the system 

with particles expressed as nodes in a graph. The dynamic behavior has been computed through the learned “message-

passing”, i.e., in this case, the exchange of energy and momentum among a particle and its neighbors. 

A GNN involves a graph embedding whereby the information contained in the graph is aggregated and transformed into 

a latent vector space representation that can be more easily employed for learning. Embeddings must be able to transform 

a graph structure into a vector space albeit still capturing the graph topology, vertex and edge features. Assuming each 

node and edge has several attributes, embeddings enable working on a reduced representation of the graph using simple 

and fast vector operations. Depending on the embedding, tasks such as node classification, clustering, or regression as 

well as edge classification and link predictions (i.e., existence or absence of an edge between two nodes) can be 

performed. It is also possible to abstract at the graph level producing a feature map for the whole graph which can be 

employed for classification or regression.  

The use of graphs has enabled the extension of deep neural models to non-Euclidean domains (i.e., geometric deep 

learning). Figure 2 shows the schematic representation of a GNN model. GNNs typically comprise several stacked layers 

in which different operators are employed to propagate information. In [15] it is shown that a graph structure can be 

encoded directly using a neural network model. Using graph spectral theory, a convolution operator has been defined 

based on the eigendecomposition of the graph Laplacian. The convolution operator has been used as a propagation 

operator to aggregate information from the graph structure and convert it into a latent vector.  

 

Figure 2 Schematic representation of a GNN model [13] 

Graph-convolutional networks have enabled the implementation of agents (e.g., actor-critic networks) that use a more 

direct representation of the physical system and have been successfully employed for learning tasks that involve diverse 

objectives including structural optimization [16], [17] and control of the structural dynamics [18]. A reinforcement 
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learning framework based on Deep Determinist Policy Gradient (DDPG) [18] and graph convolutional neural networks 

(GCNN) [15] has been developed for optimization of the bracing directions in grid shells [19]. The structure is 

represented as a graph, node and element properties including internal forces are functions defined on the graph vertices. 

A convolution operator defined in the graph spectral domain is employed as a propagation operator and for node 

embedding by aggregating and converting information from adjacent nodes and members into a latent vector. The DDPG 

and actor-critic network framework is key to enable continuous state-action spaces. The agent can obtain solutions that 

compare in quality to those obtained by a genetic algorithm and it can be applied to similar configurations without re-

training thus showing good potential to save significant computation time. Similar studies on the use of graph neural 

networks combined with reinforcement learning for structural design and optimization have been carried out in [16]. 
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